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In the critical scaling region of quenched, planar QED a composite scalar state plays an essential role
in the effective dynamics. We construct an effective potential describing the dynamics of this state for
both weak and strong gauge coupling. The scalar propagator at the strong-coupling end point is also
constructed using dispersion relation techniques. The role of the four-fermion interaction in the critical
region is emphasized and the fate of the scale symmetry elucidated.
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I INTRODUCTION

Approximate scale invariance plays a significant role in
.many diverse areas of theoretical investigation ranging

from condensed-matter physics.to models of dynamical
electroweak symmetry breaking. Quenched, planar
(ladder) QED has a vanishing perturbative scale anomaly
while exhibiting a dynamical structure [1-7] which in-
cludes a nontrivial chiral-symmetry phase structure. It
thus provides an attractive arena in which to study the
interplay of scale symmetry and dynamical chiral-
symmetry breaking and serves as a useful laboratory for
more complicated gauge theories with slowly running
couplings such as walking technicolor theories [8]. The
original motivation [9] which led to our consideration of
this model stemmed from the observation that dynamical
chiral-symmetry breaking might trigger a spontaneous
breakdown of the scale symmetry provided that, at the
chiral-symmetry-breaking scale, the scale anomaly is but
a small effect. It was speculated that, under such cir-
cumstances, the spectrum might contain an abnormally
light scalar excitation corresponding to the pseudo
Nambu-Goldstone boson of spontaneous scale-symmetry
breaking—the dilaton. However, no such nearly mass-
less scalar state appeared for ladder QED. In this paper,
we shall clarify the fate of the scale symmetry as well as
focus on the dynamical properties of the composite scalar
state in this model.

In our previous work [6-7, 10] we found that chirally
invariant four-fermion operators play an important role
in the dynamical structure of quenched, planar QED. As
such we are led to study a gauged U(1) chirally invariant
Nambu-Jona-Lasinio (NJL) model in ladder approxima-
tion described by the Lagrangian
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where p, provides a soft explicit chiral- and scale-
symmetry breaking. In Landau gauge, the fermion self-
energy X(p) is the nonperturbative solution to the ladder

approximated Schwinger-Dyson equation with an ultra-

- violet asymptotic solution given by
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where o=V'1—a/e, and &=V'a/a,—1. Here
A=A(a) and 8=8(a) are parameters of the solution
while 2,=2Z(0) is the dynamically generated fermion
mass scale. Note that the weak gauge coupling (a<a,)
solution is power-law behaved,  the strong-coupling
(a> a,) solution is characterized by an oscillatory factor,
and the critical solution (a—a,) is log behaved. The fer-
mion bare mass
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enters the solution as an ultraviolet boundary condition

(1.3)
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while the fermion condensate () is an order parame-
ter for dynamical chiral-symmetry breaking which is
evaluated using the asymptotic solution as
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Combining the expressions for m, and {¥y) in Eq. (1.3)
yields the gap equation for 2, [6,7].

With the inclusion of the four-fermion interactious, the
gap equation exhibits nontrivial chiral-symmetry-
breaking solutions for 2, in the chiral limit (u,=0) for
all values of @. In fact there is a critical curve in the
(G,a) coupling-constant plane as shown in Fig. 1, above
which the chiral symmetry is dynamically broken and
along which a nontrivial continuum limit (A /Z— o ) ap-
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FIG. 1. Chiral symmetry phase diagram.

pears to exist. The critical curve for 0<a <a, follows
from the gap equation in the chiral limit and is computed
[12] as Ga/a,=(1+w)’, where the combination
G =(GyA?/m*)a, /a has been introduced. One end point
is at a=0 and corresponds to the ordinary NJL model
[13], while the other end point occurs at a=a, and
G — 1 where the solution [6] [Eq. (1.2)] is log behaved.

Composite states are reflected by the appearance of
poles in the fermion-antifermion scattering amplitude or
equivalently as zeros in the renormalized denominator
functions [6]. For the pseudoscalar channel, DF(0) van-
ishes with the gap in the chiral limit for all «, thus signal-
ing the emergence of the massless Nambu-Goldstone
pseudoscalar of spontaneous chiral-symmetry breaking.
This is to be contrasted with the scalar denominator
function, which after application of the gap equation in
the chiral limit, is given by
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As such, no massless scalar (no dilaton) emerges and the
scale invariance appears to be explicitly broken when the
nontrivial fermion mass scale 2 is generated.

In Sec. II, we employ the model solution to construct
an effective potential [10,11] describing the interactions
of the composite scalar degree of freedom. From the
form of this potential, the nature of the scale symmetry
and its interplay with the chiral symmetry breakdown be-

comes much clearer. In particular, along the chiral line

separating the two distinct chiral symmetry phases, the
scale symmetry is preserved but in the Wigner-Weyl
mode. Of this line, in both the symmetric and spontane-
ously broken chiral symmetry phase, the scale symmetry
is explicitly broken and the source of the breaking is
identified.

In Sec. IIT we examine the strong gauge coupling end
point of the critical line and deduce the form of the scalar
effective potential. We introduce a dispersion relation for
the QED ladder-dressed bubble function from which the

fermion-antifermion scattering amplitude is shown to ex-
hibit a massive pole in the scalar channel. The resultant
scalar bound-state mass is again found to be of the order
of the dynamically generated fermion mass scale. Finally
in Sec. IV we offer some conclusions.

II. EFFECTIVE POTENTIAL: a<a,

The description of the model in the vicinity of the criti-
cal line requires the inclusion of all the relevant physical
degrees of freedom. To incorporate the composite scalar
(o} and pseudoscalar (7) modes, we recast the model La-
grangian as
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Upon application of the o, 7 Euler-Lagrangian equations,
this reproduces Eq. (1.1). From the form of Lagrangian
(2.1) we identify the full fermion bare mass as

(o)=m,, (2.2)

with m, given by Eq. (1.4).

On the other hand, to describe the infrared physics,
rather than eliminating the o,7 fields, it proves con-
venient to integrate out the short-distance components of
the fermion field. So doing, we construct the effective po-
tential :
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The contribution W (o, ) arises from the fermion deter-
minant while the remaining term is due to the four-
fermion interaction and the soft explicit chiral-symmetry
breaking. The form of W can be extracted from its vacu-
um value which satisfies
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where () includes all the radiative corrections of
ladder QED and is given in Eq. (1.5) as a function of =,
When used in conjunction with Eq. (1.4), which gives the
m, dependence of 3,

»
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we have a set of parametric equations which can be in-

" tegrated to give W{(m,,0). To obtain W(o,7) we then

need merely make the replacement m3 — o2+ 72,

Because of the power-law nature of the solution for the
coupling range O0<a<a,, the above procedure can be
straightforwardly implemented, yielding
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Adding the effects of the four-fermion contribution then gives the full effective potential
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The first two terms are y, dependent and provide a soft
explicit chiral- and scale-symmetry breaking, while the
third term is a quadratically divergent effective-mass
term. Since the mass operator ¥ carries physical scaling
mass dimension [6] d g =2+ and noting that the La-
grangian piece o1 has mass dimension 4, it follows that
the physical mass dimension of the ¢ field is

d,=2—w=1+79/2, (2.8)

with 77/2=1— being the anomalous dimension. Conse-
quently the last term in Eq. (2.7) is a scale-invariant po-

tential.
In the chiral limit (u,=0), when the four-fermion cou-

pling G, is tuned to be along the critical line,
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then the quadratically divergent effective-mass term van-
ishes and the effective potential is scale invariant. How-
ever, since along this curve the fermion mass scale 3,
vanishes in the chiral limit, the chiral symmetry remains
unbroken and the scale symmetry is realized in the
manner of Wigner and Weyl and not as a spontaneously
broken symmetry. In order to spontaneously break the
chiral symmetry for a<a,, the four-fermion coupling
must be larger than its critical value. Once off the critical
line, however, the quadratically divergent effective-mass
term ceases to vanish and the scale symmetry is explicitly
broken. This breaking reflects the dimensionality of the
four-fermion coupling G for a<a,. That is, since the
fermion mass operator carries dimension d W=2+w’ it
follows that in ladder approximation, the four-fermion
interaction has mass dimension d W)2=2d $¢>4 and is

formally irrelevant for a <a,. Nonetheless, it plays an
important role in the dynamical structure of ladder QED.
Unless the four-fermion coupling is tuned to be near the
critical line, the effective-mass term will dominate the po-
tential and the o, fields remain static. When the tuning
does occur, however, the composite o,7 degrees of free-
dom begin propagating and the physics in the vicinity of
the critical line can be understood in terms of their dy-
namics. Thus the irrelevant four-fermion interactions
play the crucial role of bringing the theory to the critical

reglon Once in the critical region, they are replaced by
the relevant interactions of the composite scalar and
pseudoscalar degrees of freedom. This interpretation is
consistent with the results from recent lattice simulations
for quenched QED [14].

The masses of the composite pseudoscalar and scalar
states can be obtained from the second derivatives of the
effective potential after a rescaling by the appropriate
wave-function renormalization factors [15] for these
states. One means of estimating these factors is to use an
analogue of the Pagels-Stokar formula [16] for the pseu-
doscalar decay constant. Introducing an external axial-
vector gauge field 4,, which couples to the axial-vector
current ¥y"y 53, and performmg a momentum expansion
of the scale-mvauant effective action in the broken phase
for p2<<m3 so that only the lowest-order momentum-
dependent term need be retained, leads to the covariant
kinetic term
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which exhibits the direct coupling of the axial gauge field
to the pseudoscalar Nambu-Goldstone field. The scalar
mass is then given by

m=Z;1 : ] 2V(o,w) o=mg 3 (2.10)
mg
: =0

which depends on the common wave function renormal-
ization constant Z}/? for the o, fields.

The extraction of Zy; is accomplished by evaluating the
A, —m two-point function exploiting the two different
couplings and retaining terms up to linear in the external
momentum. Using the softly broken axial U(1) Ward
identity to fix the form of the pseudoscalar vertex as
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a straightforward calculation [16] gives
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Since Z(p)~p¥ "', it follows that F, is finite in
the continuum limit (A/Zy— ) for all 0<a=<e,.
However, since the integral receives nontrivial contribu-
tions from all momentum scales, its explicit evaluation
requires knowledge of =(p) for all p. A rough order-of-
magnitude estimate gives F,/Z, to be a number of order
unity for any a>0. On the other hand, at a=0, F,ZT is
dominated by the ultraviolet and goes as In(A /Z4); which
is the well established result of the pure NJL model.

The magnitude of the scalar mass depends on the
strength of the four-fermion coupling and its deviation
from criticality. Fine-tuning to the critical scaling region
so that
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and, using the fact that Zp—(Z0/A)' %, it follows that
m? —>32. Thus, in the scaling region, the scalar mass is
comparable to the fermion mass scale. This is consistent
with calculation of the zero-momentum renormalized
scalar denominator function given in Eq. (1.6). As for the
pseudoscalar state, since

=~ A Z/A),
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it follows that m2 =0 as is necessary for the Nambu-
Goldstone boson of spontaneously broken chiral symme-
try.

Before closing this section, we consider the very weak
gauge coupling limit «—0. From an examination of the
effective potential of Eq. (2.7), we immediately see that

some modifications are necessary in this limit as evi-
|
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denced by the factor of a~! appearing in the last term.
This dilemma can be readily alleviated by including addi-
tional terms in the asymptotic solution to the
Schrodinger-Dyson equation which are subdominant ex-
cept in the a— 0 limit.

Including the next leading term, the asymptotic solu-
tion for X in the range 0 <a <a, is given by
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For any a> 0, the last term can be neglected for p >>3,,
and we regain the previous solution, Eq. (1.2a). On the
other hand, to make the connection with the =0 NJL
model, this term needs to be retained since the Z,/p
dependence of the last two terms is identical as a—0.
The various terms in Eq. (2.14) correspond to the contri-
butions from the operators o, ¥, and o>, respectively in
the operator-product expansion for the fermion propaga-
tor. This identification is consistent with the fact that o
and Yy carry the physical mass dimensions d,=2—w
and d -, =2-+®. On comparison with the O (a) perturba-
tive evaluation of the self-energy for a fermion of mass
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Using the asymptotic solution, we compute the fer-
mion condensate and bare mass for a <<1 as
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The effective potential in this limit can be obtained in the same manner as previously, yielding
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Note that the singular o~ ! pieces in the last two terms
identically cancel in the a—0 limit, leaving the NJL re-
sult
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Minimizing the effective potential of Eq. (2.20) yields the
equation of state in the very weak gauge coupling limit:
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where m, is related to () through Eg. (1.3). Once
again the m3 term is required to secure a nonsingular
a—0 limit.

This term could also play a non-negligible role for
small but nontrivial @ when larger values of u, and/or
the condensate appear. As such, the data from the lattice
simulations [14,17] for quenched QED should be accu-
rately described by the parametrization

po= AP +Blug+D{FP)P+C (p+D{FP)) .
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Here A, B, C, D, and 8 are smooth nonuniversal func-
tions of the coupling constants to be fitted. The normal
fitting procedure would require that Eq. (2.22) be numeri-
cally inverted to express {($¢) as a function of the pa-
rameters A4, B, C, D, 5, and p,. This fitting procedure is
further complicated by the fact that, for smaller values of
a, the exponent & should be close to 3, so there will be
large cancellations between the B and C terms. Conse-
quently, their respective contributions will be hard to
separate and the extraction of the exponent is difficult.
This, in turn, may require the simulations to be per-
formed using smaller bare masses. On the other hand,
for larger a values, the various individual contributions
should be more clearly identifiable and the fit more easily
implementable.

III. EFFECTIVE DYNAMICS AT THE CRITICAL
END POINT: c—a,., G—1

At the strong-gauge-coupling end point of the critical
line where a—a, and G — 1, the four-fermion operators
carry mass scaling dimension 4 and thus become margin-
al. Consequently, the physics in the vicinity of this point
can be substantially different than for a<e,.. To con-
struct the effective potential in this limit, we must solve

the parametric equations [cf. Eqgs. (1.4), (1.5), and (2.4)]
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Because of the logarithmic factors arising in the critical
coupling (@¢—c,) solution of the ladder Schwinger-
Dyson equation, these equations cannot be analytically
inverted in closed form. Nonetheless, the integration can
still be performed giving
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Here S,=3,(0?+7?) is given implicitly through Eq.

(3.2) where m?2 is replaced by o+« Using Eq. (2.3),
the full effective potential then takes the form
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Once again, the first two terms are p, dependent and pro-
vide a soft explicit chiral and scale symmetry breaking.
Now, however, the effective-mass term is scale invariant
since the o, fields are mass dimension 2 at a=a,. Fi-
nally the last term is approximately scale invariant with
the symmetry breaking coming from the logarithm fac-
tors in the denominator.

Using the effective potential, we can also exact the crit-
ical scaling law giving the dependence of the order pa-
rameter {¢3) on the explicit symmetry-breaking param-
eter . Minimizing the potential at the critical end point
where 1/Go= A2/ gives
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which constitutes the critical scaling law for the a—a,,
G — | strong-coupling end point.



In the chiral limit (uo=0), the effective potential is
minimized for
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Thus when G, is tuned to be near criticality so that
A2/m*—1/Gy <<A?, then an exponentially huge hierar-
chy of mass scales, 3,<<A, emerges. This reflects the
flatness of the potential ¥(o,0) which is also apparent us-
ing an approximate form obtained by replacing In(A/Z,)
by 1[A2/(o?>+7%)] so that, in the chiral limit,
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A flat direction in the potential also often signals an
abnormally light excitation in the spectrum. The mass of
the composite o state, however, is given by [cf. Eq. (2.10)]
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Using Eq. (3.2) in its definition Eq. (1.7a), we find that for
a—a,,
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It follows that m,=(A4/2w)(2¢/F,)Z, where F, is
given in Eq. (2.13). Since

(4

F, and consequently m, are again of order the dynami-
cally generated fermion mass scale 2 and not abnormal-
ly light. This is the case even though the potential is flat
along the o direction.

The above argument, used to estimate the mass of the
composite scalar state for the strong-gauge-coupling
end-point solution, is somewhat indirect. In particular,

we never directly produce a kinetic-energy term for this

degree of freedom and thus far fail to explicitly establish
that it does in fact propagate. It would clearly be desir-
able to demonstrate the existence of a massive bound- °
state pole in the scalar channel of the fermion-
antifermion scattering amplitude. Such a massive scalar
bound-state pole would appear as a zero in the renormal-
ized scalar denominator function

1
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with Zg=d3 m,. Consequently we need to be able to es-

timate this function. Towards this end, we con]ecture a
form for the bare scalar bubble function B)(k?) as a—«,
and G—1 using a dispersion relation based on some
reasonable assumptions.

Since the fermion mass is roughly given by Z;, we as-
sume that the threshold constituting the lower limit of
the dispersion integral occurs at 423, while for the upper
limit we use the ultraviolet cutoff A2. Next, we assume
that the k2 dependence of the numerator should be no
higher than that obtained in free field theory Thus we
introduce two spectral functions, p,(k?),p,(k?), and ex-
press the bubble sum as

ds Pz(S )

AZ
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Finally, motivated by the approximate scale invari-
ance, as reflected by the effective potential, Eq. (3.4), we
further assume that the absorptive part of the spectral
functions have no 23-dependence above threshold. That
is, the only 22 dependence occurs in the lower limit of the
dispersion integrals. Using the explicit functional form at
k2=0 given by [6]
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Thus the s dependence of the p,(s) is tracked from the '
known 32 dependence of BJ(0) and Eq. (3.12) takes the
form
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To access the validity of this conjecture, we evaluate the
integral at k2=0 giving
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On comparison with the exact result, Eq. (3.13), we see
that the correct 32 dependence has been reproduced,
while the coeﬁicxent of A? in the first term is approxi-
mately regained. [Since [6] 8(a,)=0.7, the coefficient of
— A%/7? using the conjecture is 0.95 compared to the ex-
act value of 1.] Although there is this slight mismatch in
the first term, we shall proceed with the conjecture as
given and subsequently modify it to guarantee the correct
B2(0) behavior.

To estimate the low-k? dependence of the bubble func-
tion, we approximate the first integral in Eq. (3.16) by re-
placing the s dependence of the logarithm in the in-
tegrand by its lower limit 433, giving
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Since the last two terms on the right-hand side vanish at
k2=0, it follows that we can guarantee the correct BJ(0)
if we replace the first term by the exact expression for
B2(0) as given by Eq. (3.13). So doing we have

(3.18)
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To proceed further, we need to estimate the p, spectral
function. Unfortunately, this proves far more difficult.
First of all, we can combine the assumed scale invariance
of p,(s) above threshold with the known asymptotic be-
havior and write

(3.19)
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where c is a constant which much be determined. It is at
this point that we face a serious impasse. In particular,
the evaluation of ¢ reqmres some additional data such as
the k? derivative of B3(k?) at some specified k? value.
At present, such 1nformat10n is lacking. One possibility

pz(s)=C% (3.20)

might be to try and relate such a derivative to F2 and use
the Pagels-Stokar formula. Even if this can be done, it
still is not completely satisfactory since F2 is only known
via the integral form Eq. (2.13) which receives nontrivial
contributions from all momentum scales.

Substituting the form for p,(s) given in Eq. (3.20) into
Eq. (3.19) and evaluating the integral for low k? by again
replacing the s dependence of the logarithm by its lower
limit 433, we find
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with ¢ an unspecified number of order 1.
The renormalized scalar denominator. function at
momentum k then takes the form

Vg A2 2
DRKk? =~ “—=3!|m +28+1| |[——
S w4 | 32 G !
A2 A?
+2-32 In | = | +25+1
B o z
A2 2 | 4%
- ?( 1—¢)Z§ln poyarEY (3.22)

Apbplication of the gap equation in the chiral limit

A G+1
1 +28=2
n 2(2) ] ey ] , ’(3.23)
then gives, as G— 1,
A? k?
DRk = =-3l|1+(1—c)n|l—— (3.24
s low k2 772 0 42(2) )
This denominator function vanishes at
k*=43%|1—exp |— | |, (3.25)
while
' A? 1—c 1
Re12 —
akzDs(k )|k2=42(2)[1_ﬁp( 1—_1c)] 2 4 exp —¢ ]
(3.26)
Thus, in the vicinity of the zero, it can be written as
A2 1—c¢ 1
DR k2 ~—
ski)m == 5 4 exp l—c]
X 1k2—432{1—exp 1—_—1.:] ] . (21

This simple zero of DX(k?2) corresponds to a simple pole
in the scalar channel of the fermion-antifermion scatter-
ing amplitude and hence a composite propagating scalar
bound state of mass



172
—1

m,=2 |1—exp 1= 2.

One shortcoming in the above analysis is that we have
completely neglected the effects of Coulomb bound states
in the scalar channel. For small values of a, when the
dominant scalar channel binding arises from the four-
fermion interaction, the effects of these Coulomb bound
states should not be very significant. As one approaches
the critical end point, however, the binding due to the
electromagnetic gauge interactions becomes comparative-
ly important and the Coulomb bound states could play a
more prominent role.

We reiterate that the above value for m is based on
using a conjectured dispersion relation which in turn in-

volved certain unproven assumptions as well as depend-

ing on the unknown constant c. Thus, while the magni-
tude of the propagating scalar mass is found to be of the
order of the fermion mass scale Z; and hence consistent
with other estimates, the specific numerical value is not
yet fixed. A more precise determination will require still
further study. If we make the additional, very strong as-
sumption that the bubble function actually satisfies an
unsubtracted dispersion relation, then the spectral func-
tion p, vanishes and hence ¢ =0. However, we know
from the known asymptotic behavior that, for weak o
values, a subtraction is necessary. Thus we anticipate
that this should also be the case at the critical end point.
Assuming an unsubtracted dispersion relation is tan-
tamount to being able to neglect all external momentum
factors in the numerator of the bubble sum integral even
after Feynman parametrization. This is clearly an ex-
tremely strong restriction which is most likely invalid.
We further note that the assumption used to construct
the dispersion relation at the strong-coupling end point
cease to be valid for smaller a values where the four-
fermion operators scale with mass dimension greater than
4. In that case, for instance, the s dependence of the
spectral weights will no longer simply track the =3 depen-
dence of B(0). This is born out by the explicit calcula-
tion in the pure NJL limit (a—0).

IV. CONCLUSIONS

It is most natural to define the quantum version of a
particular theory so as to preserve as many symmetries of
the classical model as is possible. This often entails the
introduction of additional operators in the Lagrangian
than those appearing at the classical level. Quenched,
planar QED in the chiral limit exhibits both chiral and
scale symmetries in the classical limit. We have seen
that, when chirally invariant four-fermion operators are
included in addition to the gauge interactions, along the
critical line separating the symmetric phase from that of
spontaneously broken chiral symmetry, the scale symme-
try is also preserved in the Wigner-Weyl realization. It

follows that four-fermion operators should be included in .
the quantum description of ladder QED.

In fact, for 0<a<a,, the four-fermion interactions
play a vital role in driving the theory to criticality. At
first glance, this might be somewhat surprising since
these operators are formally irrelevant and thus one
might anticipate that their inclusion should lead to effects
suppressed by inverse powers of the cutoff. However, it
takes but a small amount of four-fermion coupling
[Gy~(1/A?)] to bring the theory to the vicinity of the
critical line. Once in this critical scaling region, the com-
posite scalar and pseudoscalar degrees of freedom be-
come dynamically active and it is their relevant interac-
tions which accurately describe the physics.

We have studied ladder QED in the vicinity of the en-
tire critical line and the anomalous dimensions detailing
the behavior in this region were extracted. Off the criti-
cal line, the scale symmetry is explicitly broken due to
the dimensional four-fermion coupling. For weak to
moderate gauge coupling and provided the four-fermion
coupling is appropriately fine-tuned, the composite scalar
mode becomes a propagating dynamical degree of free-
dom and its mass was estimated to be of the same order
as the fundamental fermion mass.

At the strong-coupling end point (a—a,), the four-
fermion operator becomes scale invariant in the continu-
um limit. Moreover, the effective potential is very flat
along the o direction. While this allows for a huge
hierarchy of mass scales, 2, <<A, to emerge naturally,
the composite scalar mass is still of the order of the
dynamically generated fermion mass scale and no abnor-
mally light dilaton emerges in the spectrum. Flat direc-
tion potentials appear in many diverse physical applica-
tions involving hierarchical mass scales and are usually
accompanied by very light excitations. Here we have ex-
hibited an example where the flat potential does not lead
to such a nearly massless mode. Further investigations
into the generalizations of such flat potentials and their
possible implications for hierarchy models could prove
very instructive.
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